69 research outputs found

    ADHD and EEG-neurofeedback: a double-blind randomized placebo-controlled feasibility study

    Get PDF
    Electroencephalography (EEG)-neurofeedback has been shown to offer therapeutic benefits to patients with attention-deficit/hyperactivity disorder (ADHD) in several, mostly uncontrolled studies. This pilot study is designed to test the feasibility and safety of using a double-blind placebo feedback-controlled design and to explore the initial efficacy of individualized EEG-neurofeedback training in children with ADHD. Fourteen children (8–15 years) with ADHD defined according to the DSM-IV-TR criteria were randomly allocated to 30 sessions of EEG-neurofeedback (n = 8) or placebo feedback (n = 6). Safety measures (adverse events and sleep problems), ADHD symptoms and global improvement were monitored. With respect to feasibility, all children completed the study and attended all study visits and training sessions. No significant adverse effects or sleep problems were reported. Regarding the expectancy, 75% of children and their parent(s) in the active neurofeedback group and 50% of children and their parent(s) in the placebo feedback group thought they received placebo feedback training. Analyses revealed significant improvements of ADHD symptoms over time, but changes were similar for both groups. This pilot study shows that it is feasible to conduct a rigorous placebo-controlled trial to investigate the efficacy of neurofeedback training in children with ADHD. However, a double-blind design may not be feasible since using automatic adjusted reward thresholds may not work as effective as manually adjusted reward thresholds. Additionally, implementation of active learning strategies may be an important factor for the efficacy of EEG-neurofeedback training. Based on the results of this pilot study, changes are made in the design of the ongoing study

    Identification of Gene Modules Associated with Drought Response in Rice by Network-Based Analysis

    Get PDF
    Understanding the molecular mechanisms that underlie plant responses to drought stress is challenging due to the complex interplay of numerous different genes. Here, we used network-based gene clustering to uncover the relationships between drought-responsive genes from large microarray datasets. We identified 2,607 rice genes that showed significant changes in gene expression under drought stress; 1,392 genes were highly intercorrelated to form 15 gene modules. These drought-responsive gene modules are biologically plausible, with enrichments for genes in common functional categories, stress response changes, tissue-specific expression and transcription factor binding sites. We observed that a gene module (referred to as module 4) consisting of 134 genes was significantly associated with drought response in both drought-tolerant and drought-sensitive rice varieties. This module is enriched for genes involved in controlling the response of the plant to water and embryonic development, including a heat shock transcription factor as the key regulator in the expression of ABRE-containing genes. These results suggest that module 4 is highly conserved in the ABA-mediated drought response pathway in different rice varieties. Moreover, our study showed that many hub genes clustered in rice chromosomes had significant associations with QTLs for drought stress tolerance. The relationship between hub gene clusters and drought tolerance QTLs may provide a key to understand the genetic basis of drought tolerance in rice

    Parent of origin genetic effects on methylation in humans are common and influence complex trait variation

    Get PDF
    Parent-of-origin effects (POE) are observed when there are different effects from alleles inherited from the two parents on phenotypic measures. Here, Zeng et al. study POE on DNA methylation in 5,101 individuals and identify genetic variants that associate with methylation variation via POE and their potential phenotypic consequences

    Systematic identification of functional modules and cis-regulatory elements in Arabidopsis thaliana

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several large-scale gene co-expression networks have been constructed successfully for predicting gene functional modules and cis-regulatory elements in Arabidopsis (<it>Arabidopsis thaliana</it>)<it>.</it> However, these networks are usually constructed and analyzed in an <it>ad hoc</it> manner. In this study, we propose a completely parameter-free and systematic method for constructing gene co-expression networks and predicting functional modules as well as cis-regulatory elements.</p> <p>Results</p> <p>Our novel method consists of an automated network construction algorithm, a parameter-free procedure to predict functional modules, and a strategy for finding known cis-regulatory elements that is suitable for consensus scanning without prior knowledge of the allowed extent of degeneracy of the motif. We apply the method to study a large collection of gene expression microarray data in Arabidopsis. We estimate that our co-expression network has ~94% of accuracy, and has topological properties similar to other biological networks, such as being scale-free and having a high clustering coefficient. Remarkably, among the ~300 predicted modules whose sizes are at least 20, 88% have at least one significantly enriched functions, including a few extremely significant ones (ribosome, <it>p</it> < 1E-300, photosynthetic membrane, <it>p</it> < 1.3E-137, proteasome complex, <it>p</it> < 5.9E-126). In addition, we are able to predict cis-regulatory elements for 66.7% of the modules, and the association between the enriched cis-regulatory elements and the enriched functional terms can often be confirmed by the literature. Overall, our results are much more significant than those reported by several previous studies on similar data sets. Finally, we utilize the co-expression network to dissect the promoters of 19 Arabidopsis genes involved in the metabolism and signaling of the important plant hormone gibberellin, and achieved promising results that reveal interesting insight into the biosynthesis and signaling of gibberellin.</p> <p>Conclusions</p> <p>The results show that our method is highly effective in finding functional modules from real microarray data. Our application on Arabidopsis leads to the discovery of the largest number of annotated Arabidopsis functional modules in the literature. Given the high statistical significance of functional enrichment and the agreement between cis-regulatory and functional annotations, we believe our Arabidopsis gene modules can be used to predict the functions of unknown genes in Arabidopsis, and to understand the regulatory mechanisms of many genes.</p

    A general co-expression network-based approach to gene expression analysis: comparison and applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-expression network-based approaches have become popular in analyzing microarray data, such as for detecting functional gene modules. However, co-expression networks are often constructed by ad hoc methods, and network-based analyses have not been shown to outperform the conventional cluster analyses, partially due to the lack of an unbiased evaluation metric.</p> <p>Results</p> <p>Here, we develop a general co-expression network-based approach for analyzing both genes and samples in microarray data. Our approach consists of a simple but robust rank-based network construction method, a parameter-free module discovery algorithm and a novel reference network-based metric for module evaluation. We report some interesting topological properties of rank-based co-expression networks that are very different from that of value-based networks in the literature. Using a large set of synthetic and real microarray data, we demonstrate the superior performance of our approach over several popular existing algorithms. Applications of our approach to yeast, Arabidopsis and human cancer microarray data reveal many interesting modules, including a fatal subtype of lymphoma and a gene module regulating yeast telomere integrity, which were missed by the existing methods.</p> <p>Conclusions</p> <p>We demonstrated that our novel approach is very effective in discovering the modular structures in microarray data, both for genes and for samples. As the method is essentially parameter-free, it may be applied to large data sets where the number of clusters is difficult to estimate. The method is also very general and can be applied to other types of data. A MATLAB implementation of our algorithm can be downloaded from <url>http://cs.utsa.edu/~jruan/Software.html</url>.</p

    DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos

    Microbial Co-occurrence Relationships in the Human Microbiome

    Get PDF
    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the dental plaque) are more likely to co-occur in complementary niches. This approach thus serves to open new opportunities for future targeted mechanistic studies of the microbial ecology of the human microbiome.National Institutes of Health (U.S.) (grant CA139193)Fonds Wetenschappelijk Onderzoek – VlaanderenJuvenile Diabetes Research Foundation InternationalNational Institutes of Health (U.S.) (grant NIH U54HG004969)Crohn's and Colitis Foundation of AmericaNational Science Foundation (U.S.) (NSF DBI-1053486)United States. Army Research Office (ARO W911NF-11-1-0473)National Institutes of Health (U.S.) (grant NIH 1R01HG005969

    Thousands of Rab GTPases for the Cell Biologist

    Get PDF
    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology
    corecore